Isomerization of all-trans-retinoids to 11-cis-retinoids in vitro.
نویسندگان
چکیده
The key biochemical process of the vertebrate visual cycle required for rhodopsin regeneration, 11-cis-retinoid production from all-trans-retinoids, is shown to occur in vitro. A 600 X g supernatant from a frog retina/pigment epithelium homogenate transforms added all-trans-[3H]retinol, in a time-dependent fashion, to a mixture of 11-cis-retinol, 11-cis-retinal, and 11-cis-retinyl palmitate. 13-cis-Retinoids are formed in only minor amounts by nonspecific processes. Studies using washed particulate fractions of the 600 X g supernatant indicate that all-trans-[3H]retinol is isomerized to 11-cis-retinoids much more effectively than is all-trans-[3H]retinal or all-trans-[3H]retinyl palmitate. The 11-cis-retinoid biosynthetic activity is heat-labile, sedimentable by high-speed centrifugation, and largely found in the pigment epithelium rather than in the neural retina.
منابع مشابه
Isomerization of 11-cis-retinoids to all-trans-retinoids in vitro and in vivo.
The regeneration of 11-cis-retinal, the universal chromophore of the vertebrate retina, is a complex process involving photoreceptors and adjacent retinal pigment epithelial cells (RPE). 11-cis-Retinal is coupled to opsins in both rod and cone photoreceptor cells and is photoisomerized to all-trans-retinal by light. Here, we show that RPE microsomes can catalyze the reverse isomerization of 11-...
متن کاملPreferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein.
In photoreceptor cells of the retina, photoisomerization of 11-cis-retinal to all-trans-retinal triggers phototransduction. Regeneration of 11-cis-retinal proceeds via a complex set of reactions in photoreceptors and in adjacent retinal pigment epithelial cells where all-trans-retinol is isomerized to 11-cis-retinol. Our results show that isomerization in vitro only occurs in the presence of ap...
متن کاملBiochemical and physiological properties of rhodopsin regenerated with 11-cis-6-ring- and 7-ring-retinals.
Phototransduction is initiated by the photoisomerization of rhodopsin (Rho) chromophore 11-cis-retinylidene to all-trans-retinylidene. Here, using Rho regenerated with retinal analogs with different ring sizes, which prevent isomerization around the C(11)=C(12) double bond, the activation mechanism of this G-protein-coupled receptor was investigated. We demonstrate that 11-cis-7-ring-Rho does n...
متن کاملIsomerization of all-trans-retinoic acid to 9-cis-retinoic acid.
The discovery of the biological activity of 9-cis-retinoic acid raises questions as to its mode of biosynthesis. A simple mechanism involves the direct isomerization of all-trans-retinoic acid to 9-cis-retinoic acid. It is shown here that bovine liver membranes, but not supernatant fractions, can isomerize all-trans-retinoic acid into 9-cis-retinoic acid and 13-cis-retinoic acid. The concentrat...
متن کاملAll-trans-retinal shuts down rod cyclic nucleotide-gated ion channels: a novel role for photoreceptor retinoids in the response to bright light?
In retinal rods, light-induced isomerization of 11-cis-retinal to all-trans-retinal within rhodopsin triggers an enzyme cascade that lowers the concentration of cGMP. Consequently, cyclic nucleotide-gated (CNG) ion channels close, generating the first electrical response to light. After isomerization, all-trans-retinal dissociates from rhodopsin. We now show that all-trans-retinal directly and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 84 7 شماره
صفحات -
تاریخ انتشار 1987